References
Krueger, A. P. & Reed, E. J. Biological impact of small air ions. Science 193, 1209–1213 (1976).
Jiang, S. Y., Ma, A. & Ramachandran, S. Negative air ions and their effects on human health and air quality improvement. Int. J. Mol. Sci. 19, 2966 (2018).
Ryushi, T. et al. The effect of exposure to negative air ions on the recovery of physiological responses after moderate endurance exercise. Int. J. Biometeorol. 41, 132–136 (1998).
Sawant, V. S., Meena, G. S. & Jadhav, D. B. Effect of negative air ions on fog and smoke. Aerosol Air Qual. Res. 12, 1007–1015 (2012).
Livanova, L. M., Levshina, I. P., Nozdracheva, L. V., Elbakidze, M. G. & Airapetyants, M. G. The protective effects of negative air ions in acute stress in rats with different typological behavioral characteristics. Neurosci. Behav. Physiol. 29, 393–395 (1999).
Wu, C. C. & Lee, G. W. M. Oxidation of volatile organic compounds by negative air ions. Atmos. Environ. 38, 6287–6295 (2004).
Lin, H. F. & Lin, J. M. Generation and determination of negative air ions. J. Anal. Test. 1, 6 (2017).
Richardson, G., Eick, S. A., Harwood, D. J., Rosen, K. G. & Dobbs, F. Negative air ionisation and the production of hydrogen peroxide. Atmos. Environ. 37, 3701–3706 (2003).
Peterson, M. S., Zhang, W., Fisher, T. S. & Garimella, S. V. Low-voltage ionization of air with carbon-based materials. Plasma Sources Sci. Technol. 14, 654–660 (2005).
Chen, C. H., Huang, B. R., Lin, T. S., Chen, I. C. & Hsu, C. L. A new negative ion generator using ZnO nanowire array. J. Electrochem. Soc. 153, G894–G896 (2006).
Nakamura, T. & Kubo, T. Tourmaline group crystals reaction with water. Ferroelectrics 137, 13–31 (1992).
Yeh, J. T. et al. Negative air ion releasing properties of tourmaline/bamboo charcoal compounds containing ethylene propylene diene terpolymer/polypropylene composites. J. Appl. Polym. Sci. 113, 1097–1110 (2009).
Fan, F. R., Tian, Z. Q. & Wang, Z. L. Flexible triboelectric generator! Nano Energy 1, 328–334 (2012).
Wu, C. S., Wang, A. C., Ding, W. B., Guo, H. Y. & Wang, Z. L. Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9, 1802906 (2019).
Guo, H. Y. et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Sci. Robot. 3, eaat2516 (2018).
Liu, W. L. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 10, 1426 (2019).
Liu, Y. et al. Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun. 11, 1599 (2020).
Hinchet, R. et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019).
Xu, W. H. et al. A droplet-based electricity generator with high instantaneous power density. Nature 578, 392–396 (2020).
Chen, L. et al. Controlling surface charge generated by contact electrification: strategies and applications. Adv. Mater. 30, 1802405 (2018).
Shi, Q., He, T. & Lee, C. More than energy harvesting – combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy 57, 851–871 (2019).
Liu, S., Wang, H., He, T., Dong, S. & Lee, C. Switchable textile-triboelectric nanogenerators (S-TENGs) for continuous profile sensing application without environmental interferences. Nano Energy 69, 104462 (2020).
Leung, S. et al. A self‐powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater. 30, 1704611 (2018).
Zi, Y. L. et al. Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10, 4797–4805 (2016).
Li, A. Y., Zi, Y. L., Guo, H. Y., Wang, Z. L. & Fernandez, F. M. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nat. Nanotechnol. 12, 481–487 (2017).
Li, C. J. et al. Self-powered electrospinning system driven by a triboelectric nanogenerator. ACS Nano 11, 10439–10445 (2017).
Zi, Y. L. et al. Field emission of electrons powered by a triboelectric nanogenerator. Adv. Funct. Mater. 28, 1800610 (2018).
Cheng, J. et al. Triboelectric microplasma powered by mechanical stimuli. Nat. Commun. 9, 3733 (2018).
Kim, H. J., Han, B., Woo, C. G. & Kim, Y. J. Ozone emission and electrical characteristics of ionizers with different electrode materials, numbers, and diameters. IEEE Trans. Ind. Appl. 53, 459–465 (2017).
Kim, H. J., Han, B., Kim, Y. J., Oda, T. & Won, H. Submicrometer particle removal indoors by a novel electrostatic precipitator with high clean air delivery rate, low ozone emissions, and carbon fiber ionizer. Indoor Air 23, 369–378 (2013).
Tyndall, A. M., Starr, L. H. & Powell, C. F. The mobility of ions in air. Part IV.—Investigations by two new methods. Proc. R. Soc. Lond. A 121, 172–184 (1928).
Skalny, J. D. et al. Mass spectrometric study of negative ions extracted from point to plane negative corona discharge in ambient air at atmospheric pressure. Int. J. Mass Spectrom. 272, 12–21 (2008).
Wu, C. C., Lee, G. W. M., Yang, S., Yu, K. P. & Lou, C. L. Influence of air humidity and the distance from the source on negative air ion concentration in indoor air. Sci. Total Environ. 370, 245–253 (2006).
Lin, L., Li, Y., Khan, M., Sun, J. S. & Lin, J. M. Real-time characterization of negative air ion-induced decomposition of indoor organic contaminants by mass spectrometry. Chem. Commun. 54, 10687–10690 (2018).
Sabo, M., Okuyama, Y., Kucera, M. & Matejcik, S. Transport and stability of negative ions generated by negative corona discharge in air studied using ion mobility-oaTOF spectrometry. Int. J. Mass Spectrom. 334, 19–26 (2013).
COMSOL Multiphysics v.5.2a (COMSOL, 2016); https://cn.comsol.com/comsol-multiphysics
Zi, Y. L. et al. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 6, 8376 (2015).